Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1

نویسندگان

  • Xinxin Feng
  • Yuyan An
  • Jie Zheng
  • Miao Sun
  • Liangju Wang
چکیده

Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control) were identified by complementary gel-based and gel-free separation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control) and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related genes. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX, and MdUFGT) in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin-related verification in apple calli suggested that the regulation of MdMADS1 on anthocyanin biosynthesis was partially independent of fruit ripening process. Taken together, our findings provide insight into the mechanism how ALA regulates anthocyanin accumulation and add new information on transcriptase regulators of fruit coloration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Molecular cloning and characterization of a MADS-box cDNA clone of the Fuji apple.

A cDNA clone, MdMADS1, containing MADS domain was isolated from the Fuji apple. The gene was expressed in all floral organs and young fruits but not in leaves. The expression was higher at the early stages of flower and fruit developments, suggesting that MdMADS1 plays a major role in the initiation of reproductive organ developments.

متن کامل

673 Comparative Genomics of Angiosperm MADS Box Genes

Vivian F. Irish Yale University, New Haven, CT. MADS box genes encode key transcriptional regulators that have been implicated in the control of various aspects of floral development, primarily through work carried out in Arabidopsis. We have embarked on a series of analyses to examine the extent to which gene duplication, regulatory diversification and differences in protein interactions have ...

متن کامل

Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.

MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SE...

متن کامل

Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016